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1. INTRODUCTION

'ADEC recently expressed a need for a tank-cannon-launched training projectile with reduced

penetration capability. The expressed primary design goal for a KE tank-cannon-launched training

projectile was to minimize the probability of personnel injury and materiel loss in the eveni of an

accidental impact during a training exercise. A current state-of-the-art tank-cannon-launched projectile

is the M865IP (Figure 1). This is a limited-range training projectile which simulates the launch and flight

characteristics of an actual war round. During launch, the M8651P endures a peak base pressure of

288 MPa (42 ksi) and achieves a muzzle velocity of 1,700 m/s. Even though the projectile is only used

for target practice, the steel flight body contains 4.6 MJ of KE at a velocity of 1,700 m/s. Thus,

accidental impacts result in considerable damage. For example, several years ago in Grafenwoehr,

Germany, an MI tank crew was on the firing range practicing with the thermal sight. The tank gunner

accidently sighted on a group of Bradley Fighting Vehicles in a nearby firing zone and shot at them with

a KE training round containing a solid-steel penetrator. One crewman was killed, four others were

wounded, and two Bradleys were severely damaged.

The M8651P launch package (Figure 1) consists of three sabot petals (only two shown), a solid-steel

flight body, and an aluminum flare. The sabot petals are assembled around the flight body and interface

with it by means of threads. A nylon obturator (not shown), which acts as a gas seal, is pressed onto the

grooves located on the aft bulkhead of the petals. When assembled, this configuration seals the cannon

tube and transfers the energy of the expanding propellant gases to the KE of the projectile. Once the

launch package has cleared the cannon tube, aerodynamic forces lift off the sabot petals. The flight body

is then stabilized in flight by the high drag aluminun flare at the aft. To meet the primary design goal,

the penetration capability of the flight body must be considerably reduced. Four factors-length, diameter,

striking velocity, and the ratio of penetrator and target densities--are involved in determining the

penetration capability of a KE penetrator. The KE penetrator length, diameter, and striking velocity are

fixed by three design criteria which are meant to constrain the design to physically resemble and fly like

the M865IP. These three criteria are discussed in more detail later. The penetrator density remains as

the only variable to modify. A measure of theoretical hydrodynamic penetration capacity is the density

law:

P/L - (Pp/PT). (I)
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Figure 1. M8651P KE tank-training DroJectile.

where

P = penetration depth,

L = length of the penetrator,

P = density of the penetrator, and

p = density of the target.

By decreasing the density of a constant length penetrator, penetration is reduced. Therefore, by replacing

the heavy steel core of the M865EP with a lower density material, such as an aluminum alloy, the

penetration into a steel target will be reduced by approximately 41%. However, a solid aluminum-alloy

flight body was thought to still possess too much penetration capability. To further reduce this, a hollow

flight body design was used. The resulting design was thus referred to as the Hollow Aluminum Training

Round (HATR). Because of the incorporation of a hollow aluminum flight body, the structural integrity

of the entire projectile during cannon launch was questioned, and the new design had to be structurally

verified. This verification was done with the use of finite element analysis techniques.
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Other design criteria for the HATR were considered as the structural integrity of the launch package

was being examined. These criteria fixed the KE penetrator length, diameter, and striking velocity. Firs:

the projectile must resemble the external appearance of a current training projectile so tLAt launching

components (i.e., sabot petals and obturator) would not have to be redesigned. The current training

projectile design chosen was the M8651P. Secondly, the HATR must be inexpensive to manufacture;

hence, maximum use of existing hardware was made. The use of aluminum alloy will also lower the

material and machining costs.

Finally, the HATR must be a ballistic match to the M8651P. Th's ensures that a tank gunner could

shoot the HATR without making any changes to the fire control solution of the tank's ballistic computer.

The ballistic match requireme it is expressed mathematically in equation 2.

WM865IP WHATR (2)

CDIA CD2 A

where:

WMg65s = weight of the M865EP,

WHATR = weight of the HATR,

CD, = coefficient of drag of the M8651P, measured,

CD2  = coefficient of drag of the HATR, theoretical, and

A = reference area based on projectile diameter.

The coefficient of drag for the M8651P was the same as that used to generate the M8651P firing table.

The coefficient of drag for the HATR is derived from a theoretical aerodynamic computer model

(PRODAS 1991). Since the external appearance of the training projectile resembles that of the M8651P,

the reference areas are the same. The M8651P has a mass of approximately 3.2 kg (weight = 7.0 Ibm)

and is stabilized by a high-drag flare. The HATR flight body mass was targeted at 1.0 kg (weight =

2.1 bmn). The coefficient of drag for the HATR must be chosen to balance equation 2. Because the

design mass of the HATR is small, compared to the M8651P, CD2 must be comparably smaller than CD1,

or the velocity of the HATR will retard faster than the M8651P. Therefore, instead of a flare, the HATR

has to be stabilized by low-drag fins. The fins for an existing projectile, the M735 KE projectile, were

3



used (Figure 2). The 1ATR design depicted in Figure 2 resembles the M86 51P. The only differences

from the MS651P are the flight body material and the reliance on fins instead of a flare for stabiliaton-

Mso5

M35 ALUMINUM SABOT PETAL
/FINS /ADAPTER 

-

TIPPING RING

PLUG EXTENSION ALUMINUM WINDSCREEN

(ADDED LATER) FLIGIIT BODY (ALUMINUM)

Figure 2. ATPi

2. MODELING

2.1 A" A o axisyulnetrnc, quasi-static stress analysis was performed on

w oinmethod of analysis has been performed on KE projectiles in

the past (DdesigA so n uin 19S ) .A ...... .ao., to the IIATh were effected to facilitate
jj T .d es g s 9ho w . A num ber of s i m p lifications to th e f blades w as incorporated into the

t h e p a s t ( D r y s d al e 1 9 8,1)- i 
m a s s . T h e i n t e r f a ce•,-

ax tisiec analysis. Although the ATR has fins, the mass of the flnt

axisYofetr inhbtofra composite axisymmetric body with the same total mass.
masof the fin hub to form a c poi e mtdbaxymercgovs

threads between the sabot and the flight body were also approxýimated by axisymietic grOVeS

The quasi-staic assumption was made to further simplify the analysis. Even though the aunch

package is Eubjected to a range of pressur over a very short period of time, dynamic analyses have

shown that the effects of wave propagation are not significanu Therefore, the maximum dynamic loads

cani be replaced by quasistic loads (Sorenson 1992). To further simplify the model, it is alt o assumed

that the gun tube is perfectly straight anra balloting of the launch package is nonexistent
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2.2 Model. With all of the previous assumptions, the HATR configuration in Figure 2 is

approximated with a two-dimensional, axisymmetric geometry which was discretized using a free meshing

technique. The resulting mesh (Figure 3) consists of linear triangles. Triangular elements were used

because of the accuracy and ease these elements afford in modeling complicated geometries. Further,

linear elemerts were chosen for ease of calculation. In regions of predicted high stress, a finer mesh was

used than in other areas of the model. This was done to improve the accuracy of the model and the speed

of the solution's convergence. The following nominal material properties for aluminum alloy were used

in the model:

Density Young's Modulus Poisson's
(kg/m3 [Ibm/in3]) (MPa [psi x 106]) Ratio

2,710 [0.101] 6,890 [10] 0.33

The composite fin hub model was assigned a slightly higher density to account for the mass of the fin

blades.

To eliminate rigid body motion between all parts of the model and ensure proper force transmission,

node-to-node gap elements were used along the threaded interfaces. The gap elements also prevent

interpenetration of elements along the threaded interface.

2.3 Loads and Boundary Conditions. The HATR is to be launched from an M256

120-mm smoothbore tank cannon. The launching environment is very harsh, with hydrostatic pressure

on the base of the launch package reaching a peak magnitude of 207 MPa (30 ksi). This pressure

corresponds to an acceleration of the 3.7-kg (weight = 8.1 Ibm) launch package of 66,000 g's. Since the

tank cannon has a smooth bore (i.e., has no rifling), torque loading on the projectile is negligible.

Figure 4 displays the loads and constraints on the model. Roller restraints are placed on the sabot to

simulate the presence of the tube wall. To assure that axial motion is eliminated, a node near the center-

of-gravity of the model is axially constrained. The axial stresses at this node will be negligible once the

axial loads are properly balanced. This usually requires some iterative fine-tuning of the applied pressure

and acceleration loads. The inertial acceleration necessary to maintain the axial static state is derived from

Newton's Second Law:

F = maz = PBASE*ABORE, (3)
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Figure 3. Element plot of the HATR model.

RADIAL RESTRAINTS

SINGE AXALýINERTIAL LOAD
RESTRAINT 66000 G'S

Figure 4. HATR boundary conditions and cylindrical coordlinate system.
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where:

F = total axial force,

m = total launch mass, 3.7 kg (weight = 8.1 Ibm),

az = peak axial acceleration of the launch mass,

PBASE = peak base pressure on the projectile, 206.8 MPa (30.0 ksi), and

ABORE = bore area of the gun tube, 113.1 cm2 (17.5 in2).

The magnitude of the pressure loading was determined with the ARL interior ballistic computer code

IBHVG 2. IBHVG 2 is a lumped parameter interior ballistic model. The code is used for calibration of

interior ballistic data, including gas pressure, projectile displacement, and projectile velocity as a function

of time (Anderson and Fickie 1987).

3. STRESS ANALYSIS

The von Mises stress criterion is a theory that specifies that plastic yielding will occur when the

combined stresses of a body equal or exceed the tensile yield stress of a metal. The von Mises stress

failure criterion has been validated by previous empirical studies (Sorenson 1992). Von Mises, a', can

be represented by the following equation:

0' = {[(ol1-02)2 + (02 -_03? + ((,--032/2}112

0o>CF>031 (4)

where a1,, 2, and a3 are the principal stresses.

Plastic yielding is predicted to occur when the von Mises sutss is equal to or greater than the yield stress,

ayied, of the material. If the design has extensive areas of plastic yielding, then it is likely to suffer

unacceptable deformations, and possibly even fracture in service. However, if only small localized regions

of yielding are predicted, then it is presumed that some redistribution of material through plastic flow will

alleviate these high stress areas. The HATR analysis showed some localized areas of high stress on some

of the teeth in the threaied interface of the sabot/flight body region. Plastic flow of these teeth was

assumed so that the loads would be distributed to other teeth and the high stresses would be alleviated.

7



Although the predicted von Mises stress is well below yield over most of the structure, a region near

the tipping ring exceeded the yield stress of aluminum (Figure 5). The yield strength of aluminum

7075-T6 is reported as 503 MPa (73 ksi). Notice that in stress region 1, the stresses range from 495 MPa

(72 ksi) to 558 MPa (81 ksi). Since the stresses exceed the yield stress of aluminum, it is assumed that

undesirable plastic yielding will occur.

In an effort to determine the mechanism that generated the high von Mises stress, the axial (azz),

circumferential (a%), and radial (a;,) stress components of the tipping ring region were reviewed.

Figures 6-8 contain the contour plots of the oz7 , Ooo, and Orr, respectively. Notice that in Figure 7, the

compressive aoo stresses range from 386 MPa (56 ksi) to 473 MPa (69 ksi). Though these stresses do

not exceed ffaid of aluminum, they are much greater in magnitude than the other components. It was

assumed that if the circumferential stresses could be reduced, the von Mises stresses would also be

decreased.

To improve the design, the adapter (Figure 2) was extended further into the hollow flight body to add

support to the tipping ring region. This would allow loads near the tipping ring region to be distributed

throughout the hollow flight body wall and the plug extension, thus alleviating the high stresses. With

this modification, the projectile was reanalyzed, and the stresses in the vicinity of the tipping ring were

found to be reduced below yield stress. Figure 9 contains a von Mises stress contour plot of the

redesigned region. This figure shows that the stresses are significantly reduced as compared to the old

design.

4. CONCLUSION

After the final stress analysis predicted that the HATR would survive gun launch, 15 of the projectiles

were fabricated and test fired. All 15 were successfully launched. Figure 10 shows a high-speed

photograph of the newly designed projectile in flight. Aeroballistic experiments were performed on six

of these projectiles. It was demonstrated that the fin-stabilized HATR exhibits similar flight characteristics

to the flare-stabilized M8651P in terms of trajectory. The other nine projectiles were shot into various

armors to determine penetration capacity. The HATR demonstrated a substantial reduction in penetration

into armor steel, on the order of one magnitude less than that for the M8651P steel training projectile.

A cost analysis, performed by ARDEC, found a substantial cost savings with the HATR design. In

conclusion, analysis of the HATR concept is appealing for two reasons: (1) reduced potential for inflicting

damage in the event of a training accident and (2) lower production costs compared to the M8651P.
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